Incremental Convex Hull
Outline and Reading

- **Point location**
 - Problem
 - Data structure

- **Incremental convex hull**
 - Problem
 - Data structure
 - Insertion algorithm
 - Analysis
Point Location

Given a convex polygon P, a point location query $\text{locate}(q)$ determines whether a query point q is inside (IN), outside (OUT), or on the boundary (ON) of P.

An efficient data structure for point location stores the top and bottom chains of P in two binary search trees, T_L and T_H of logarithmic height.

- An internal node stores a pair $(x(v), v)$ where v is a vertex and $x(v)$ is its x-coordinate.
- An external node represents an edge or an empty half-plane.
Point Location (cont.)

To perform \(\text{locate}(q) \), we search for \(x(q) \) in \(T_L \) and \(T_H \) to find:
- Edge \(e_L \) or vertex \(v_L \) on the lower chain of \(P \) whose horizontal span includes \(x(q) \)
- Edge \(e_H \) or vertex \(v_H \) on the upper chain of \(P \) whose horizontal span includes \(x(q) \)

We consider four cases:
- If no such edges/vertices exist, we return OUT
- Else if \(q \) is on \(e_L (v_L) \) or on \(e_H (v_H) \), we return ON
- Else if \(q \) is above \(e_L (v_L) \) and below \(e_H (v_H) \), we return IN
- Else, we return OUT
The incremental convex hull problem consists of performing a series of the following operations on a set S of points:

- $\text{locate}(q)$: determines if query point q is inside, outside or on the convex hull of S.
- $\text{insert}(q)$: inserts a new point q into S.
- $\text{hull}()$: returns the convex hull of S.

Incremental convex hull data structure:

- We store the points of the convex hull and discard the other points.
- We store the hull points in two red-black trees:
 - T_L for the lower hull
 - T_H for the upper hull
Insertion of a Point

In operation \(\text{insert}(q) \), we consider four cases that depend on the location of point \(q \):

- **A** IN or ON: no change
- **B** OUT and above: add \(q \) to the upper hull
- **C** OUT and below: add \(q \) to the lower hull
- **D** OUT and left or right: add \(q \) to the lower and upper hull
Insertion of a Point (cont.)

- Algorithm to add a vertex q to the upper hull chain in Case B (boundary conditions omitted for simplicity)
 - We find the edge e (vertex v) whose horizontal span includes q
 - $w \leftarrow$ left endpoint (neighbor) of e (v)
 - $z \leftarrow$ left neighbor of w
 - While $\text{orientation}(q, w, z) = \text{CW or COLL}$
 - We remove vertex w
 - $w \leftarrow z$
 - $z \leftarrow$ left neighbor of w
 - $u \leftarrow$ right endpoint (neighbor) of e (v)
 - $t \leftarrow$ right neighbor of u
 - While $\text{orientation}(t, u, q) = \text{CW or COLL}$
 - We remove vertex u
 - $u \leftarrow t$
 - $t \leftarrow$ right neighbor of u
 - We add vertex q
Analysis

Let n be the current size of the convex hull

- Operation locate takes $O(\log n)$ time
- Operation insert takes $O((1 + k)\log n)$ time, where k is the number of vertices removed
- Operation hull takes $O(n)$ time
- The amortized running time of operation insert is $O(\log n)$