\V

Merge Sort

[72D94—>2479]
/\

[7D2 - 2 7]

/ -7

2 - 2

(04 - 49
T~

3) (=]

(1.
N

Merge Sort

Outline and Reading

N

Divide-and-conquer paradigm (§4.1.1)
Merge-sort (§4.1.1)

= Algorithm

= Merging two sorted sequences

= Merge-sort tree

= Execution example

= Analysis

Generic merging and set operations (§4.2.1)
Summary of sorting algorithms (§4.2.1)

Merge Sort

Divide-and-Conquer

g
\

Divide-and conquer is a # Merge-sort is a sorting
general algorithm design algorithm based on the
paradigm: divide-and-conquer

= Divide: divide the input data paradigm

S in two disjoint subsets .S, # Like heap-sort

and S, m [t uses a comparator
= Recur: solve the

m It has O(n log n) running

subproblems associated fime

with §, and §, iike h
= Conquer: combine the ¢ Unlike heap-sort
solutions for §, and , into a = It does not use an
solution for § auxiliary priority queue
The base case for the = It accesses data in a
recursion are subproblems of sequential manner
size 0 or 1 (suitable to sort data on a
disk)

Merge Sort 3

Merge-Sort

N

Merge-sort on an input
sequence S with »
elements consists of
three steps:

= Divide: partition S into

two sequences S, and §,
of about n/2 elements
each

= Recur: recursively sort S,
and §,

= Conquer: merge S, and
S, into a unique sorted
sequence

Merge Sort

Algorithm mergeSort(S, C)

Input sequence § with n
elements, comparator C

Output sequence S sorted
according to C

if S.size() > 1
(8, 8,) « partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S « merge(S,, S,)

N

The conquer step of

merge-sort consists
of merging two
sorted sequences 4
and B into a sorted
sequence S
containing the union
of the elements of A4
and B

Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

Merging Two Sorted Sequences

Algorithm merge(A, B)

Input sequences 4 and B with
n/2 elements each

Output sorted sequence of 4 [1 B

S§ — empty sequence
while = A.isEmpty() 0= B.isEmpty()
if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))
else
S.insertLast(B.remove(B.first()))

while ~ A.isEmpty()
S.insertLast(A.remove(A.first()))

while = B. lsEmpty ()
S.insertLast(B.remove(B.first()))

return .S

Merge Sort 5

Merge-Sort Tree

N

" @ An execution of merge-sort is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores
» unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution

= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[7259442479]

[7[|2—->27] [9D4-—>49]

7-7) (22 (=9 (3

Merge Sort 6

N

Execution Example

@ Partition

729403861

Merge Sort

Execution Example (cont.)

Recursive call, partition

(72940386 1]

N

Execution Example (cont.)

Recursive call, partition

(72940386 1]

Merge Sort

Execution Example (cont.)

#Recursive call, base case

(72940386 1]

)))
/N N\ /N N\
0D OO0 OO O

Merge Sort

)
]

Execution Example (cont.)

#Recursive call, base case

(72940386 1]

Merge Sort 11

Execution Example (cont.)

#Merge

(72940386 1]

Execution Example (cont.)

#Recursive call, ..., base case, merge

(72940386 1]
/\ _________
(7 209 4] i \
[7 02 2/7]> 4 9] ! ‘. i .
Hen & e e b 0 e

Merge Sort 13

Execution Example (cont.)

#Merge

(72940386 1]

7 2004- 2479

AN

7o2-.27 [94 - 49]

Merge Sort 14

Execution Example (cont.)

#Recursive call, ..., merge, merge

(72940386 1]
[72D94m1368]
/\ m

7o2-.27 (94 - 49] 38 .38 [61-156]

Execution Example (cont.)

#Merge

729403861 . 123467809]

P AN RERRARR L

(7 2004- 2479 (3861 - 136 8|
s

N

Analysis of Merge-Sort

The height 2 of the merge-sort tree is O(log n)
= at each recursive call we divide in half the sequence,

@ The overall amount or work done at the nodes of depth i is O(n)
= we partition and merge 2/ sequences of size n/2!
= we make 2! recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqgs size

0 1 n [J
] 2 nl2 [] [J

N
) (

i i nf2i |] |]]
/ "\ ANR2N
[) O) OO0

Merge Sort 17

)|
) |

N

Summary of Sorting Algorithms

Algorithm

Time

Notes

selection-sort

O(n?)

slow
in-place
for small data sets (< 1K)

Insertion-sort

O(n?)

@ slow
in-place
for small data sets (< 1K)

heap-sort

O(n log n)

fast
in-place
4 for large data sets (1K — 1M)

merge-sort

O(n log n)

fast
sequential data access
for huge data sets (> 1M)

Merge Sort 18

