
NP-Completeness 1

NP-Completeness
x1 x3x2x1 x4x3x2 x4

11

12

13 21

22

23 31

32

33

NP-Completeness 2

Outline and Reading
P and NP (§13.1)

Definition of P
Definition of NP
Alternate definition of NP

NP-completeness (§13.2)
Definition of NP-hard and NP-complete
The Cook-Levin Theorem

NP-Completeness 3

Running Time Revisited
Input size, n

To be exact, let n denote the number of bits in a nonunary
encoding of the input

All the polynomial-time algorithms studied so far in this
course run in polynomial time using this definition of
input size.

Exception: any pseudo-polynomial time algorithm

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233
337

2555

142

NP-Completeness 4

Dealing with Hard Problems
What to do when we find a problem
that looks hard…

I couldn’t find a polynomial-time algorithm;
I guess I’m too dumb.

(cartoon inspired by [Garey-Johnson, 79])

NP-Completeness 5

Dealing with Hard Problems
Sometimes we can prove a strong lower
bound… (but not usually)

I couldn’t find a polynomial-time algorithm,
because no such algorithm exists!

(cartoon inspired by [Garey-Johnson, 79])

NP-Completeness 6

Dealing with Hard Problems
NP-completeness let’s us show
collectively that a problem is hard.

I couldn’t find a polynomial-time algorithm,
but neither could all these other smart people.

(cartoon inspired by [Garey-Johnson, 79])

NP-Completeness 7

Polynomial-Time
Decision Problems

To simplify the notion of “hardness,” we will
focus on the following:

Polynomial-time as the cut-off for efficiency
Decision problems: output is 1 or 0 (“yes” or “no”)

Examples:
Does a given graph G have an Euler tour?
Does a text T contain a pattern P?
Does an instance of 0/1 Knapsack have a solution with
benefit at least K?
Does a graph G have an MST with weight at most K?

NP-Completeness 8

Problems and Languages

A language L is a set of strings defined over some
alphabet Σ
Every decision algorithm A defines a language L

L is the set consisting of every string x such that A outputs
“yes” on input x.
We say “A accepts x’’ in this case

Example:
If A determines whether or not a given graph G has an
Euler tour, then the language L for A is all graphs with
Euler tours.

NP-Completeness 9

The Complexity Class P

A complexity class is a collection of languages
P is the complexity class consisting of all languages
that are accepted by polynomial-time algorithms
For each language L in P there is a polynomial-time
decision algorithm A for L.

If n=|x|, for x in L, then A runs in p(n) time on input x.
The function p(n) is some polynomial

NP-Completeness 10

The Complexity Class NP
We say that an algorithm is non-deterministic if it
uses the following operation:

Choose(b): chooses a bit b
Can be used to choose an entire string y (with |y| choices)

We say that a non-deterministic algorithm A accepts
a string x if there exists some sequence of choose
operations that causes A to output “yes” on input x.
NP is the complexity class consisting of all languages
accepted by polynomial-time non-deterministic
algorithms.

NP-Completeness 11

NP example
Problem: Decide if a graph has an MST of weight K

Algorithm:
1. Non-deterministically choose a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Testing takes O(n+m) time, so this
algorithm runs in polynomial time.

NP-Completeness 12

The Complexity Class NP
Alternate Definition

We say that an algorithm B verfies the acceptance
of a language L if and only if, for any x in L, there
exists a certificate y such that B outputs “yes” on
input (x,y).
NP is the complexity class consisting of all languages
verified by polynomial-time algorithms.

We know: P is a subset of NP.
Major open question: P=NP?
Most researchers believe that P and NP are different.

NP-Completeness 13

NP example (2)
Problem: Decide if a graph has an MST of weight K

Verification Algorithm:
1. Use as a certificate, y, a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Verification takes O(n+m) time, so this
algorithm runs in polynomial time.

NP-Completeness 14

Equivalence of the
Two Definitions

Suppose A is a non-deterministic algorithm
Let y be a certificate consisting of all the outcomes of the
choose steps that A uses
We can create a verification algorithm that uses y instead of
A’s choose steps
If A accepts on x, then there is a certificate y that allows us to
verify this (namely, the choose steps A made)
If A runs in polynomial-time, so does this verification
algorithm

Suppose B is a verification algorithm
Non-deterministically choose a certificate y
Run B on y
If B runs in polynomial-time, so does this non-deterministic
algorithm

NP-Completeness 15

An Interesting Problem

NOT

OR

AND

Logic Gates:
Inputs:

0
1

0

1

1
1

1

1

Output:

0

1

0 0 1

A Boolean circuit is a circuit of AND, OR, and NOT
gates; the CIRCUIT-SAT problem is to determine if
there is an assignment of 0’s and 1’s to a circuit’s
inputs so that the circuit outputs 1.

NP-Completeness 16

CIRCUIT-SAT is in NP

NOT

OR

AND

Logic Gates:
Inputs:

0
1

0

1

1
1

1

1

Output:

0

1

0 0 1

Non-deterministically choose a set of inputs and the
outcome of every gate, then test each gate’s I/O.

NP-Completeness 17

NP-Completeness
A problem (language) L is NP-hard if every
problem in NP can be reduced to L in
polynomial time.
That is, for each language M in NP, we can
take an input x for M, transform it in
polynomial time to an input x’ for L such that
x is in M if and only if x’ is in L.
L is NP-complete if it’s in NP and is NP-hard.

NP poly-time L

NP-Completeness 18

Cook-Levin Theorem
CIRCUIT-SAT is NP-complete.

We already showed it is in NP.

To prove it is NP-hard, we have to show that every
language in NP can be reduced to it.

Let M be in NP, and let x be an input for M.
Let y be a certificate that allows us to verify membership in M in
polynomial time, p(n), by some algorithm D.
Let S be a circuit of size at most O(p(n)2) that simulates a
computer (details omitted…)

NP poly-time CIRCUIT-SAT
M

NP-Completeness 19

Cook-Levin Proof

< p(n)
cells

S

x

D

W

y

x

D

W

y

S S

x

D

W

y

p(n)
steps

In
pu

ts

n

We can build a circuit that simulates the verification of x’s
membership in M using y.
Let W be the working storage
for D (including registers,
such as program counter); let
D be given in RAM “machine
code.”
Simulate p(n) steps of D by
replicating circuit S for each
step of D. Only input: y.
Circuit is satisfiable if and only
if x is accepted by D with
some certificate y
Total size is still polynomial:
O(p(n)3).

Output
0/1

from D

NP-Completeness 20

Some Thoughts
about P and NP

Belief: P is a proper subset of NP.
Implication: the NP-complete problems are the hardest in NP.
Why: Because if we could solve an NP-complete problem in
polynomial time, we could solve every problem in NP in polynomial
time.
That is, if an NP-complete problem is solvable in polynomial time,
then P=NP.
Since so many people have attempted without success to find
polynomial-time solutions to NP-complete problems, showing your
problem is NP-complete is equivalent to showing that a lot of smart
people have worked on your problem and found no polynomial-
time algorithm.

NP P

CIRCUIT-SAT

NP-complete
problems live here

