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Outline and Reading
P and NP (§13.1)

Definition of P
Definition of NP
Alternate definition of NP

NP-completeness (§13.2)
Definition of NP-hard and NP-complete
The Cook-Levin Theorem
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Running Time Revisited
Input size, n

To be exact, let n denote the number of bits in a nonunary
encoding of the input

All the polynomial-time algorithms studied so far in this 
course run in polynomial time using this definition of 
input size.

Exception: any pseudo-polynomial time algorithm
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Dealing with Hard Problems
What to do when we find a problem 
that looks hard…

I couldn’t find a polynomial-time algorithm; 
I guess I’m too dumb.

(cartoon inspired by [Garey-Johnson, 79])
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Dealing with Hard Problems
Sometimes we can prove a strong lower 
bound… (but not usually)

I couldn’t find a polynomial-time algorithm, 
because no such algorithm exists!

(cartoon inspired by [Garey-Johnson, 79])
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Dealing with Hard Problems
NP-completeness let’s us show 
collectively that a problem is hard.

I couldn’t find a polynomial-time algorithm, 
but neither could all these other smart people.

(cartoon inspired by [Garey-Johnson, 79])
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Polynomial-Time 
Decision Problems

To simplify the notion of “hardness,” we will 
focus on the following:

Polynomial-time as the cut-off for efficiency
Decision problems: output is 1 or 0 (“yes” or “no”)

Examples:
Does a given graph G have an Euler tour?
Does a text T contain a pattern P?
Does an instance of 0/1 Knapsack have a solution with 
benefit at least K?
Does a graph G have an MST with weight at most K?
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Problems and Languages

A language L is a set of strings defined over some 
alphabet Σ
Every decision algorithm A defines a language L

L is the set consisting of every string x such that A outputs 
“yes” on input x.
We say “A accepts x’’ in this case

Example:
If A determines whether or not a given graph G has an 
Euler tour, then the language L for A is all graphs with 
Euler tours.
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The Complexity Class P

A complexity class is a collection of languages
P is the complexity class consisting of all languages 
that are accepted by polynomial-time algorithms
For each language L in P there is a polynomial-time 
decision algorithm A for L.

If n=|x|, for x in L, then A runs in p(n) time on input x.
The function p(n) is some polynomial
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The Complexity Class NP
We say that an algorithm is non-deterministic if it 
uses the following operation:

Choose(b): chooses a bit b
Can be used to choose an entire string y (with |y| choices)

We say that a non-deterministic algorithm A accepts
a string x if there exists some sequence of choose 
operations that causes A to output “yes” on input x.
NP is the complexity class consisting of all languages 
accepted by polynomial-time non-deterministic
algorithms.
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NP example
Problem: Decide if a graph has an MST of weight K

Algorithm: 
1. Non-deterministically choose a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Testing takes O(n+m) time, so this 
algorithm runs in polynomial time.
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The Complexity Class NP 
Alternate Definition

We say that an algorithm B verfies the acceptance 
of a language L if and only if, for any x in L, there 
exists a certificate y such that B outputs “yes” on 
input (x,y).
NP is the complexity class consisting of all languages 
verified by polynomial-time algorithms.

We know: P is a subset of NP.
Major open question: P=NP?
Most researchers believe that P and NP are different.
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NP example (2)
Problem: Decide if a graph has an MST of weight K

Verification Algorithm: 
1. Use as a certificate, y, a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Verification takes O(n+m) time, so this 
algorithm runs in polynomial time.
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Equivalence of the 
Two Definitions

Suppose A is a non-deterministic algorithm
Let y be a certificate consisting of all the outcomes of the 
choose steps that A uses
We can create a verification algorithm that uses y instead of 
A’s choose steps
If A accepts on x, then there is a certificate y that allows us to 
verify this (namely, the choose steps A made)
If A runs in polynomial-time, so does this verification 
algorithm

Suppose B is a verification algorithm
Non-deterministically choose a certificate y
Run B on y
If B runs in polynomial-time, so does this non-deterministic 
algorithm
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An Interesting Problem

NOT

OR

AND

Logic Gates:
Inputs:
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0
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1
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Output:

0

1

0 0 1

A Boolean circuit is a circuit of AND, OR, and NOT 
gates; the CIRCUIT-SAT problem is to determine if 
there is an assignment of 0’s and 1’s to a circuit’s 
inputs so that the circuit outputs 1.
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CIRCUIT-SAT is in NP

NOT
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Non-deterministically choose a set of inputs and the 
outcome of every gate, then test each gate’s I/O.
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NP-Completeness
A problem (language) L is NP-hard if every 
problem in NP can be reduced to L in 
polynomial time.
That is, for each language M in NP, we can 
take an input x for M, transform it in 
polynomial time to an input x’ for L such that  
x is in M if and only if x’ is in L.
L is NP-complete if it’s in NP and is NP-hard.

NP poly-time L
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Cook-Levin Theorem
CIRCUIT-SAT is NP-complete.

We already showed it is in NP.

To prove it is NP-hard, we have to show that every 
language in NP can be reduced to it.

Let M be in NP, and let x be an input for M.
Let y be a certificate that allows us to verify membership in M in 
polynomial time, p(n), by some algorithm D.
Let S be a circuit of size at most O(p(n)2) that simulates a 
computer (details omitted…)

NP poly-time CIRCUIT-SAT
M
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Cook-Levin Proof
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We can build a circuit that simulates the verification of x’s
membership in M using y.
Let W be the working storage 
for D (including registers, 
such as program counter); let 
D be given in RAM “machine 
code.”
Simulate p(n) steps of D by 
replicating circuit S for each 
step of D.  Only input: y.
Circuit is satisfiable if and only 
if x is accepted by D with 
some certificate y
Total size is still polynomial: 
O(p(n)3).

Output
0/1

from D
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Some Thoughts     
about P and NP

Belief: P is a proper subset of NP.
Implication: the NP-complete problems are the hardest in NP.
Why: Because if we could solve an NP-complete problem in 
polynomial time, we could solve every problem in NP in polynomial 
time.
That is, if an NP-complete problem is solvable in polynomial time, 
then P=NP.
Since so many people have attempted without success to find 
polynomial-time solutions to NP-complete problems, showing your 
problem is NP-complete is equivalent to showing that a lot of smart 
people have worked on your problem and found no polynomial-
time algorithm.

NP P

CIRCUIT-SAT

NP-complete 
problems live here


